P10189 [USACO24FEB] Maximizing Productivity B 题解

P10189 [USACO24FEB] Maximizing Productivity B 题解

Leo2011 魔怔哥

先说说暴力做法:

每次遍历一遍,看看是否满足 ,满足就计数,不满足就挂。单次时间复杂度显然为 ,总得时间复杂度约为 ,TLE 是肯定的~

暴力代码:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
// Problem: Problem 3. Maximizing Productivity
// Contest: USACO - USACO 2024 February Contest, Bronze
// URL: https://usaco.org/index.php?page=viewproblem&cpid=1385
// Memory Limit: 256 MB
// Time Limit: 4000 ms
//
// Powered by CP Editor (https://cpeditor.org)

/*Code by Leo2011*/
#include <bits/stdc++.h>

#define log printf
#define EPS 1e-8
#define INF 0x3f3f3f3f
#define FOR(i, l, r) for (int(i) = (l); (i) <= (r); ++(i))
#define IOS \
ios::sync_with_stdio(false); \
cin.tie(nullptr); \
cout.tie(nullptr);

using namespace std;

typedef __int128 i128;
typedef long long ll;
typedef pair<int, int> PII;

const int N = 2e5 + 10;
int n, q, c[N], t[N];

template <typename T>

inline T read() {
T sum = 0, fl = 1;
char ch = getchar();
for (; !isdigit(ch); ch = getchar())
if (ch == '-') fl = -1;
for (; isdigit(ch); ch = getchar()) sum = sum * 10 + ch - '0';
return sum * fl;
}

template <typename T>

inline void write(T x) {
static T sta[35];
int top = 0;
do { sta[top++] = x % 10, x /= 10; } while (x);
while (top) putchar(sta[--top] + 48);
}

int main() {
n = read<int>(), q = read<int>();
FOR(i, 1, n) c[i] = read<int>();
FOR(i, 1, n) t[i] = read<int>();
FOR(i, 1, q) {
int v = read<int>(), s = read<int>(), cnt = 0;
FOR(j, 1, n) if (s + t[j] < c[j])++ cnt;
if (cnt >= v) puts("YES");
else puts("NO");
}
return 0;
}

评测记录,开了优化也只有 20pts。


暴力废了,开始整正解。

?二分法,了解一下?

然后,然后遇到了个问题:二分这东西要求有序,可是 是绑定在一起的啊!咋整?

注意 没关系,而这个式子能够求出啥啊?想要去到第 个农场最大的 嘛(,刚好卡点儿到,不可能再晚了)!

总结一下,问题相当于预处理出来一个数组 ,使 ,求数组中是否有至少 个数满足

先排个序(不然还是 嘛),然后就可以分出来两种做法:

做法一:二分,用 upper_bound 函数(因为是大于等于),时间复杂度约为

做法二:排完序后显然满足 ,因此如果 都小于等于 了,那它前面的自然也都满足。因此只需要判断 成不成立即可。时间复杂度约为

赛时 ACCode(做法二):

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
// Problem: Problem 3. Maximizing Productivity
// Contest: USACO - USACO 2024 February Contest, Bronze
// URL: https://usaco.org/index.php?page=viewproblem&cpid=1385
// Memory Limit: 256 MB
// Time Limit: 4000 ms
//
// Powered by CP Editor (https://cpeditor.org)

/*Code by Leo2011*/
#include <iostream>
#include <algorithm> // 万能头CE

#define log printf
#define EPS 1e-8
#define INF 0x3f3f3f3f
#define FOR(i, l, r) for (int(i) = (l); (i) <= (r); ++(i))
#define IOS \
ios::sync_with_stdio(false); \
cin.tie(nullptr); \
cout.tie(nullptr);

using namespace std;

typedef __int128 i128;
typedef long long ll;
typedef pair<int, int> PII;

int N, Q;
int close[200010], t[200010], ans[200010], V, S;

template <typename T>

inline T read() {
T sum = 0, fl = 1;
char ch = getchar();
for (; !isdigit(ch); ch = getchar())
if (ch == '-') fl = -1;
for (; isdigit(ch); ch = getchar()) sum = sum * 10 + ch - '0';
return sum * fl;
}

template <typename T>

inline void write(T x) {
static T sta[35];
int top = 0;
do { sta[top++] = x % 10, x /= 10; } while (x);
while (top) putchar(sta[--top] + 48);
}

bool x(int a, int b) { return a > b; }

int main() {
cin >> N >> Q;
for (int i = 1; i <= N; i++) { cin >> close[i]; }
for (int i = 1; i <= N; i++) { cin >> t[i]; }
for (int i = 1; i <= N; i++) { ans[i] = close[i] - t[i]; }
sort(ans + 1, ans + N + 1, x);
while (Q--) {
cin >> V >> S;
if (ans[V] > S) cout << "YES" << endl;
else cout << "NO" << endl;
}
return 0;
}

AC 记录~

  • 标题: P10189 [USACO24FEB] Maximizing Productivity B 题解
  • 作者: Leo2011
  • 创建于 : 2024-02-29 20:56:04
  • 更新于 : 2024-11-10 22:06:54
  • 链接: https://www.leo2011.eu.org/2024/02/29/p10189-usaco24feb-maximizing-productivity-b-ti-jie/
  • 版权声明: 本文章采用 CC BY-NC-SA 4.0 进行许可。
评论
目录
P10189 [USACO24FEB] Maximizing Productivity B 题解